Glutamate receptors mediate dynamic regulation of nitric oxide synthase expression in cerebellar granule cells.

نویسندگان

  • S L Baader
  • K Schilling
چکیده

Nitric oxide (NO) is a multifaceted messenger molecule believed to be involved in neural plasticity and development. Within the cerebellum, the NO synthesizing enzyme, NO synthase (NOS), is expressed exclusively by granule cells and stellate/basket neurons. In the adult cerebellum, levels of NOS expression can be used to define discrete clusters of granule cell populations. Differential expression of NOS by granule cells temporally coincides with the establishment of afferent innervation of granule cells. In primary cerebellar cultures that comprise a functional network of glutamatergic and GABAergic cerebellar neurons, blockade of electrical activity by tetrodotoxin induced the expression of the neuronal isoform of NOS (nNOS) in granule cells. Conversely, direct depolarization of cultured neurons with K+ completely downregulated nNOS expression. Suppression of NMDA receptor- and AMPA receptor-mediated spontaneous synaptic signaling in cultured cells resulted in a drastic upregulation of nNOS expression in granule neurons. In contrast, blockade of GABAA receptor-mediated intercellular communication did not affect nNOS expression by granule cells. Blocking N-, P-, and Q-type voltage-dependent Ca2+ channels resulted in a graded upregulation of NOS expression, whereas manipulations of the cAMP-dependent signal transduction pathway induced no changes. We conclude that nNOS expression in developing cerebellar granule cells is regulated by excitatory neurotransmission and that calcium is an important signal transduction molecule involved in this regulatory process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System.

Neurovascular coupling (NVC) is the process whereby neuronal activity controls blood vessel diameter. In the cerebellum, the molecular layer is regarded as the main NVC determinant. However, the granular layer is a region with variable metabolic demand caused by large activity fluctuations that shows a prominent expression of NMDA receptors (NMDARs) and nitric oxide synthase (NOS) and is theref...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

NMDA induces post-transcriptional regulation of alpha2-guanylyl-cyclase-subunit expression in cerebellar granule cells.

Activation of N-methyl-D-aspartate (NMDA) glutamate receptors commonly affects gene expression in different neurons. We reported previously that chronic treatment of rat cerebellar granule cells with NMDA (24 hours) upregulates the expression of mRNA encoding the alpha2 subunit of the nitric-oxide-sensitive guanylyl cyclase. However, the molecular mechanisms involved in this process remained to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 1996